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This article examines some of the methods used by animals and humans to
adapt their environment. Because there are limits on the number of different
tasks a creature can be designed to do well in, creatures with the capacity to
redesign their environments have an adaptive advantage over those who can
adapt only passively to existing environmental structures. To clarify
environmental redesign, l rely on the formal notion of a task environment as a
directed graph in which the nodes are states and the links are actions. One
natural form of redesign is to change the topology of this graph structure so as
to increase the likelihood of task success or to reduce its expected cost,
measured in physical terms. This may be done by eliminating initial states,
hence eliminating choice points; by changing the action repertoire; by
changing the consequence function; and, lastly, by adding choice points.
Another major method for adapting the environment is to change its cognitive
congeniality. Such changes leave the state space formally intact but reduce the
number and cost of mental operations needed for task success; they reliably
increase the speed, accuracy, or robustness of performance. The last section of
the article describes several of these epistemic or complementary actions
found in human performance.
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Introduction

A creature has at least three logically distinct strategies for improving its fitness It

can adapt to the environment, migrate to new surroutdings, or adapt tlle ermiromne~It

itself In this article, I shall examine the third strategy, redesigning the environment.
The problem of when to adapt, when to redesign an environment, and when to

search for a new habitat is broad enough to be treated as a general fact of life. Humans,

1 Although I am posing the problem as one facing an individual creature, we could equally well pose the problem for
populations, intelligent agents, groups, or any unit that can be thought capable of adapting to an environment, leaving
an environment, or modifying an environment.
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no doubt, are among the few creatures who (explicitly) reason about this problem;
but it is certain that other animals tacitly face a similar problem and that evolution
has wired in a partial strategy for solving it. The reason we may expect creatures to
have built-in strategies for redesigning their environments is that creatures with some
active control over the shape of their environment will have an adaptive advantage
over those who can adapt only passively to existing environmental structures. This
follows because the number of tasks in which a creature can be designed to do well is
limited, It is ulllikely that a design which alloBvs a creature to be evceptionally fleet-
footed on flat terrains also will confer exceptional agility on rocky terrains. Design
trade-offs must be made. If, however, a creature could somehow change the rocky
terrain it visits (by making paths), or if it could augment its design with prostheses
or tools (e.g., carry cups of water in dry regions, use &dquo;fishing sticks&dquo; to poke narrow
crevices), its existing design becomes more adaptive.
We do not have to look far to find examples of how animals and humans modify

their environments in adaptive ways. Beavers dam ponds, birds build nests, ants farm

aphids, chimps leave useful nut-cracking stones in commonly used places (Kummar,
1995), squirrels collect nuts for winter, and Egyptian vultures drop stones on os-
trich eggs. In each case, the environment is warped to the creature’s capacities rather
than the other way around. This is to be expected within a classic adaptationist ap-
proach, for in the struggle for existence, organisms with these favored behavioral
tendencies will outreproduce their competitors with less favored behavioral tenden-
cies ; if these tendencies are heritable, the distribution of tendencies will change over
generational time, with the favored tendencies becoming more common. Hence,
classic adaptationism predicts that environmental modification will occur (Butler,
1995).

Nonetheless, evolutionary arguments do not explain these traits are adaptive.
For that we must look to economic and ethological arguments. Thus, because food-
stuffs are scarce in winter but plentifill and cheap in the fall, it is wise to stock up
in the fill (standard inventory control principles). Because the probability of finding
an ideal nesting site is small, at some point it becomes more cost-effective to build
a nest in a suboptimal spot than to continue searching (investment analysis). And
because good nutcracking stones take time to find, it is better to leave them where

they will be most useful for everyone concerned than to discard them in arbitrary
ways (amortize the cost of search). When such explanations are offered, we believe
we have understood the phenomena better but, if we look closely, we note that
behind such explanations there is an appeal to a notion of task environment that is
distinct from the notion of the selective environment present in evolutionary argu-
ments. It must be so, for the economic principles appealed to all show that a given
behavior X is preferred to behavior Y with respect to a certain goal. They cannot
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show that behavior X is better than Y, all things considered. Thus, leaving around a

nutcracking stone is desirable for the task of nutcracking, but it may not be a good
tactic overall because it may have a side jfll<><I of cueing predators. What is good for
a task in isolation may not be good when all tasks are considered together.
My objective here is to explain this notion of task environment in order to extend

the range of analyses available to understand active redesign. ) will draw on ideas
from computer science, economics, the theory of problem solving, and the study
of interactivity to clarify what environmental redesign is and suggest ways we might
measure its benefits.

This article is organized into five major sections. After this introduction, I distill-

guish the notion of a task environment from that of the environment more broadly
construed. Task environments are substructures within a more all-encompassing se-
lective environment. This distinction supplies us with the descriptive apparatus to

pose the problem of environmental redesign in a natural way: Namely, how is a

creature to change the structure of at lcast one task environment so that its overall

performance-that is. its performance summed over all task environments-is im-

proved. This global improvement may be achieved by enhancing performance in
one or more task environments without reducing performance in any other (Pareto
optimization) or by enhancing performance in one or more environments to more
than compensate for any reductions incurred in others.

Because a task environment is a substructure within a larger selective environment,
it is necessary to provide effective criteria for deciding which parts of the larger
environment fall within a given task environment and which parts fall outside it.

This is undertaken in section 3. Using the language of computer sciences, define
the structure of a task environment to be a directed graph in which the nodes are states
and the links are actions. Because not all actions available in the larger environment
are allowable as moves in a particular task environment, we distinguish actions that
are irrterrrnl to a task from actions that are cxtcmal. For example, actions that modify
the structure of a task can be achieved only by performing Ictiolis that are external
to the task. This distinction makes it possible to claim that creatures perform actions
for the sake of redesigning a task environment.

The remainder of the article focuses on some of the Lliiicreiit types of ms~l’-o.rtrnrml

actions available to both human and nonhuman animals for redesigning task envi-
ronment. Two broad categories are distinguished: (1) external actions that change
the topology of a state space and that we may expect to find prevalent in animal

populations, and (2) external actions that change the cognitive congeniality of a

space and that are an important and understudied feature of human and cultural

adaptation.
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2 Environments Versus Task Environments

The term elJlirolJl~lelJt, in normal biological parlance, refers to everything evogenous
to a creature that may affect its physiology, experience, or death. This includes thc
full range of external factors that may affect an agent’s experience and motivation-
factors affecting its internal state broadly understood-as well as all factors determin-

ing its possibilities for action and the consequences of its actions. For our purposes
here, it will be sufficient to use the term (wnirnJrJrr(’Jtt in a slightly narrower manner
to refer to t~J(’ I(t~l~lt~~ ot- CI/(’S, Clll<ti’~llllts, 1’(’sc~ll!’C(’~, Illd ll’i1111,1C’1’S in a creatures world

that determines its success, where sJJCCOcs means its differential reproductive success.
&;rtr(~~ncNf. then, means the &dquo;selective&dquo; environment (cf. Brandon, 1990).

One feature of the notion of selective environment is that it abstracts from most of

the microstructure in a creature’s niche. If the environment is thc totality of external
cues and resources that can nlake a difference to reproductive success, there is no

distinction between those cues and resources that are relevant to one type of task (e.g.,
food collection) and affect the success or failure of particular foraging strategies, and
those cues and resources that are relevant to another task (e.g., predator avoidance) and
affect the success or failure of particular defensive strategies. Although the creature
inhabits only one world, for certain types of analysis it is useful to circunlscribe that
one world into subdomains, each of which is relevant to the success or failure of

particular task strategies. Following psychologists, 1 shall refer to these subdomains
or microenvironments embedded in the larger environment as tnsk crnirmJrnrrrts. A
creature’s selective environment, then, is a superposition of task environments.

Once we distinguish the selective environment (broadly construed), from partic-
ular task environments within it (microenvironments). it is easy to state one problem
that evolution, learning, or intelligence must &dquo;solve&dquo; for a creature. It must determine

how to conform to the optimality principle:

OptirJJnlity Efficiently allocate time and energy to the performance
of different tasks so as to maxima overall &dquo;return&dquo; (Lewontin, I L)7X; cf. 

’

Horn, 1979).

For example, we expect that a well-adapted creature will etficiently divide its time

among hunting, drinking, exploring the terrain, hiding from predators, finding and
attracting mates, and the like. Given the returns inherent in each task environment,
the creature must allocate its resources among its different behavioral strategies so as
to maximize its overall yield.

Ethologists have been tackling this resource allocation problem for some time
now, using the language and methods of economics. For instance, to decide how
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much time an optimal lizard ought to spend foraging vcrsus hiding from predators, an

ethologist would study lizards in their natural habitat and then plot the cost-benefit
curves of foraging and thc cost-benefit curves of hiding. An optimal creature ought
to allocate its time and energy between foraging and hiding so that, at thc margin,
it is equally profitable whether the next minute is spent either foraging or hiding.
This follows because if one activirf-say foraging-were more profitable, an optima!
creature would invest more time in foraging until the danger of being out in the open
would lower the profitability of foraging, making hiding a more attractive option.
III this way, it is possible to identify an optimal allocation strategy (Koza, Rice, &

Roughgarden, 1992).
The calculations here are based on simple microeconomic principles of optimiza-

tion. The hard work, of course, is to discover the underlying tacts about the lizard
environment that permit the cost-benefit curves to be constructed. For instance, it

is necessary to determine both the probability of predation as a function of distance
from the hiding spot and the probability of catching prey as a function of distance.
This is now a well-acceptcd methodology in ethology. Once again, the entire en-

terprise assumes that activity-salient Features of the environment can be identified.
Features of the environment that are relevant to an activity call be distinguished from
features that are irrelevant.

If we accept this microeconomic way of posing the problem of adaptation, we can

easily restate our question of environmental redesign. It a creature already is allocating
its time optimally among all the task environments in which it operates, then the

only way it has of increasing its yield, assuming it does not change its physiology or
one of its behavioral strategies-a classic process of self-adaptation that we assume

requires generational time-is to increase the yield Ot one of its behavioral strategies.
This gives rise to a principle of suprroptimality:

Strprroptinraliry’ prinriple: If a creature already is allocatin~; its time optinlally
among its different tasks, the only way its overall weltare can be increased is if
the payoff function for one of its strategies increases.

Because the payoff function is determined by the environment,2 this principle means
that one of the creature’s task environments must change. Assuming that the forces
of change are not stemming from the global environment, this implies that either
the creature migrates to a new habitat where it is easier to achieve one or more

2 Payoff functions always are defined with respect to a creature’s physiology and behavioral strategies. Thus, a physio-
logical change having the effect that a creature’s need to drink or eat is lower would change the shape of the payoff
curve for eating and drinking, as thirst and hunger thresholds now will be different. Similarly, the payoff function also
is tagged to particular behavioral strategies, as a change in how a creature behaves (particularly if this involves a change
in its capacities) requires identifying the consequences of new actions or action sequences.
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of its goals, or it redesigns its environment. (See also Fletcher, Zwick. ~~ Bedau,

&dquo;Dependence of Adaptability on Environmcntal Structure in a Simple Evolutionary
Model,&dquo; in this issue for a related view.)

In microeconomics, individual agents cannot migrate to new economic envi-

ronments, cannot change their basic internal structure (physiology, technology) or
behavioral capacities and, significantly, cannot alter the payoft function by redesign-
ing their environment. This last constraint holds because it is assumed that individual

economic agents are unable to alter the structure of their task environments. Any
one firiii cannot change the price or supply of raw nlatcrials, the market price of
its product, or change thc available methods of production. This is not to say that

the totality of firiiis making up an industry is unable to influence prices or affects

technology. Collectively they can, but this power to reshape the environment does
not reside in individual agents. It is a macroef1ect: The shape of the payoff function
lies outside the rolltrol of any one agent. It is a given of the environment and so not

a nlanipulablr variable (Simon. 1955).
The same assumption applies in classic ethology. For ethological analysis to get

off the ground, it is assumed that alt illdividual predator cannot significantly change
thc prey population (input supply)-although, of course, there are aggregate or

macroetfects of the entire population of predators that result in predator-prey cycles,
trends, and so on. Nor can individual predators change the metabolic benefits (price)
it obtains from eating prL,j>, nor the hunting techniques it has at its disposal. Thc;L,
are the givens of the adaptive context in which it tinds itself. Evolution can change
metabolism, culture can change hunting techniques and, in the course of a single litc

span, predator-prey cycles may change the relative proportion of prey to predators,
but all these changes must be regarded to bc macrolevel changes, events that hclp to

shape and define the microenvironment of individual predators.
Because the behaviors in which I will be interested often occur on a very short

time scale (relative to more gradual, smooth evolutionary changes) and often with
limited effect (just affecting the environment of one creature, or possibly a teBv), the
environmental changes brought on by populations are not my primary concern. This
does not mean that such changes in task environment structure cannot be explained
using the analyses I will propose. It means, rather, that there is a class of environmental

redesigns that are likely to slip beneath the filter of evolutionary selection.

Despite the importance of the assumption that agents do not change their task
environments, this idea is not enshrined in the theory of natural selection, which is
concerned with population changes in the selective environment. There Bvas nothing
in Fisher’s (l~)3l1) original mathematical analysis of natural selection that required
agent environment independence, although Fisher himself relied on the assumption
to prove his fundamental theorems. The reason Fisher assumed that environments
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would be the S,1me both before and after adaptation was to prevent having to change
the differentia) goodness of a1) attribute as it spread through the Reputation. For

example, if a gene for increased appetite and stomach size enters the population
and confers an adaptive advantage on its owners, Fisher (1930) assumed that as the

gene spread through the population, the differential goodness of larger stomachs
and appetites would not diminish even though a consequence of more animals with

larger stomachs might be that there is less vegetation available for other members
of the population. 1’ut differently, because every environment has a limited capacity
to accommodate its population (its carrying capacity, f‘), we might well expect that
increased appetite alters the carrying cap,1City of the environment, leading to a smaller
sustainable population and also to d reduced selective advantage (reproductive rate

r) as the population nears f~. Fisher did not alter r and K, but again there is no

mathematical reason, short of simplicity, to require these to be constant.
Not surprisingly, there have been several efforts to accommodate the density

dependence of attributes. (See Koyama, 1 ~)~)?, for a good account of density-
dependent parameter models.) Such models permit the spread of an allele to alter
the carrying capacity of the environment. This is clearly a step in the right direc-
tion. However, one assumption limits all these models: They all assume thnt r and K

vary smoothly with the spread of the attribute. Accordingly, there are no threshold
effects or jumps in K or r as a result of reaching certain population densities. This
is not entirely realistic. Such jumps might happen, for example, if greater appetite
leads to greater defecation, which in turn either increases the vegetation yicld non-

smoothly because of threshold effects, hence nonsmoothly increasing the carrying
capacity, or if greater defecation decreases the yield r1o17s1ilOOCI~Iy through thresh-
old toxicity, suddenly killing off vegetation and so nonsmoothly decreasing carrying
capacity.

Introducing agent environment codependence is an important first step in allowing
individual agents to have a significant effect on the structure of their environments.
However, as noted, there remains an assumption in all these models that such code-

pendence is highly constrained, leads to smooth changes in environmental structure
and, most importantly of all, is the kind of codependence for which there can be

genetic selection. If, as I believe, there exist examples of environmental redesign that
are idiosyncratic to particular agents and that sometimes result in nonsmooth changes
in fitness, research at the level of evolutionary selection will require complementary
studies to explain these phenomena. Again, this does not imply that evolutionary
selection is irrelevant; the capacity to exploit elements of the environment oppor-
tunistically to enhance task performance is a valuable capaciy to pass 011. But it

does imply that the specific ways individual creatures have of redesigning their en-
vironmcnts may be localized in time and space and so not fully explicable from a
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selectionist standpoint. To make this case plausible, it is necessary to define exactly
what we mean by a task environment.

3 What Is a Task Environment?

The adaptationist program encourages an engineering approach to organisms: In

the ideal case, well-adapted creatures ought to converge on optimal designs for par-
ticular tasks (McFarland & Houston, 1981). The point of partitioning the global
environment into a collection of task environments is to provide us with a theoret-
ical abstraction, the task environment, that is sufficiently well defined that we can
evaluate the performance of competing organism designs or competing algorithm
for action by using concepts drawn from computer science. We want to be able to

compare the efficiency of different algorithms for carrying out particular tasks.

Formally, a task can be represented as a directed graph, in which the nodes of
the graph denote choice points (i.e., possible states), the links represent transitions
or actions, and a privileged set of states represents the possible ways of completing
the task. A successful effort at the task can then be understood as a trajectory, or

path, through this graph structure, starting from an initial state and ending at one
of the states satisfying the goal condition. Typical tasks we might hope to represent
as trajectories include caring for cubs, building a IlesC from local debris, collecting
termites from a 6-foot mound, damming a stream, avoiding a charging predator,
mating, and so on.

IIl the human world, the tasks for which a directed graph representation might be
constructed range from highly structured activities, such as playing solitaire, solving
an algebraic problem, or making a curved surface in a graphics program, all cases

where there are a small number of possible actions at each choice point, to less

formal tasks, such as cooking, cleaning, driving to work, and even writing an essay,
for which the actions available at an arbitrary choice point are more difficult to
enumerate and success is more difficult to measure. In studying behavior in these
tasks, a researcher attempts to determine the topology of the state space and to
discover a plausible metric to permit comparing the goodness of different plans or

algorithnls for performing the task. Typical metrics might be the minimum number
of actions required to get from the current to the goal state, or the amount of energy
required to reach the goal, or the reliability of the paths to the goal. It then is possible
to rank different algorithms with respect to how much energy they require for task

completion, or how reliable they are, or how many actions they use. It is believed

that this methodology will scale to large tasks too, as shown by the vast literature on
administrative behavior (Simon, 1976), workplace design (Kroemer, 1993), human
factors (Teichner, 1971), and human computer interaction (Diaper, 1989).
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To bc more precise, let us follow Simon (1973) and say that a task environment is
well detined if the following conditions apply:

. There is a well-defined illiticll state in which the agent begins.

. There is an operationally defined goal ionditiorr, satisfaction of which
represents success at the task or which allows us to determine the degree
of success the creature has achieved.

. There is a set of discrete, task-relevalt ilroicr poirrts-lo~les in the statc
space-although these may be arbitrarily dense.

There is a determinate but finite set of goal-relevant actions (including
thc null action) available at each choice point-the optioit or./iarcihility
set-which is a subset of the agent’s task-relevant actioll repertoire.

. There is a corrac~lncrrce_/icnctie~rt that determines for each action taken in a
state the new state that will be produced.

. There is a 1/Ietric that specifies for each state the cost required to reach the >

next state (or possibly the goal), as measured in steps, energy, reliability.
or dme.

Action selection can then be seen as the application of two successive filters (Elster,
1979). Given a choice point, filter the action repertoire to yield a feasible set, then
filter the feasible set to yield a choice set by applying the metric to the consequences
flowing from each feasible action and invoking a decision rule to select the best. If

the choice set is determined by a simple decision rule (filter 2), such as maximize

expected return, each action in the choice set will have the same expected utility. If

the choice set is determined by a different decision rule, such as minimize the worst

possible injury or cost, each action will serve the conservative function of leading
to states that are not likely to be costly, even though they may have very different

expected benefits. The action actually carried out is any one of those in the choice
set and is assumed to be arbitrarily chosen, although often there will be only one
action in the choice set. &dquo; -

To see how we can use the directed graph notation to understand behavior,
consider how we would explain a bird constructing its nest. We would begin by -
defining the goal condition as, say, the construction of a stable structure with certain

shape and size, and having certain thermal and tensile properties. The initial state
would be the site chosen on which to build, such as a branch or small hole. as well

as the distribution of useful resources or debris-the local inventory-to be found
in the region over which the bird is willing to scavenge (e.g., sticks, feathers, paper,
saliva, and dirt within a radius of 51) m). Choice points then are introduced by
assuming that there is a set of construction-relevant actions available at various points
in the nest-building process. For instance, if the nest walls need to be heightened
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and the bird’s beak is empty, the bird faces the choice of selecting which of a small
set of appropriate nearby inventory items should If a17 item is already in
the beak, then the bird must choose among ~/i«~ the item on one of a small set
of points or surfaces on the emerging nest, rejecting the itelll and drrypilr~~ it, or

storing it for later usc by phi<iijg it to onr side. As each action is compteted, the state of
the environment changes and the bird faces a new choice point determined by the
demands of the task. The distance from the t;oal, mcanwhilc, might be estimated
by how many items of the inventory will be required to tinish the nest or by how
much energy will be needed. The consequence of any action is given by stating how
the nest and bird each differ after tamping, or after the bird fetches a stick, and so
oil. By using a directed graph to represent the nest-building process, we distinguish
trajectories of nest building that are likely to be Successful frol those likely to be
unsuccessful When this anatytica) framework is used in conjunction with empirical
observation of these trajectories, we hope to infer the strategies, plals, and behavioral

programs that animals acCUally use.
One advantage of developin~; an account of behavior that treats it as algorithmic

is that BB’e can consider some of the computational properties of the algorithm
regulating it. (See Harel, 1 9x7, for a simple account of these properties.) How much
memory is required to follow this algorithm? How many steps will be required in
the worst case or in the average case? How robust is the algorithm to interference?
to noise? It Bve can determine these properties of behavior coltrol strategies, we can

explain the adaptive advantage of different strategies.
The factor that complicates this simple picture is that we cannot sill/ply inter these

computational facts. The robustness of a program may depend on how it is imple-
mented. A production system implementation (l~eBVell, 1973) of a skill or strategy
that consists of a set of rules that trigger only when the creature and environment
are in a certain state may have one level of robustness and performance, whereas a
recurrent network implementation of the same skill or strategy may have another.
Hence, Bve cannot go directly from the behavioral analysis of programmed behavior
to the computational properties of the &dquo;pro~ram&dquo; that regulates behavior, because
our analysis will depend on how we think the creature is programmed. The reason to
be hopeful about this line of research, though, is that there is a well-established belief
in computer science that, at an abstract level, we can discuss the absolute complexity
of a task or problem in a manner that abstracts from arbitrary aspects of an algorithm
and implementation (Harel, 1987). Thus, even if Bve do not know whether a crea-
ture has a working memory capable of storing ~ll items, we still can know that the
creature must be capable of keeping track of ill items if it is to perform the task and
that it wilt have to perform at least N (mental or physiral) manipulations on those
M items. How it does this storing is implementation-dependent. It may somehow
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encode markers in working memory and manipulate them internally. or it may have
a less symbolic memory and reiv clll visual strategies for tracking or quickly isolating
recently seen items in Cht environment and then physically may manipulate those
external items. We cannot say in advance of detailed research. Nonetheless, we can

rank different algorithms by thcir &dquo;memory&dquo; requirements, and we can rank different
tasks by their complexity in the sense that the most efficient algorithm capable of
solving them will have certain complexity measures (Papadimitriou. 1 ’>v5).

3.1 Justifying a choice of a state-space representation
The concept of a task environment that ! have been presenting is ,1Jl abstraction laid

over the interactions between an agent pursuing some goal. which we call its tasrl>,
and the physical environment in which it is acting. The point of the abstraction
is to reveal the constraints on goal-relevant activity inherent in agent environment
interaction, so that we can explore the subgoal structure of the task and thereby
explore the costs and benefits Of pursuing different paths in the task state space.

To justify a particular state-space analysis of a task, it is necessary first to justify one’s
choice of action repertoire, choice points, option set, consequence function, metric.

goal condition, and initial state. Wf these, the most crucial choices are the action

repertoire, option set, and consequence function, as these determine the llollnletric
(or qualitative) topology of the space. HoBv then do we choose the states and actions
that allow us to interpret activity as a trajectory in a particular task state space?

There are really two issues here. First, how do we decide how to classify the states
and actions occurring in task performance? Second, how do we decide whether an
action observed while a creature is engaged in n task is the type of action that qualifies
as <1 move 11’ll~Iff! tliit task space is opposed to bcing ,1Jl ,1ction tI1.1t just 11<lpptllv to

occur in the same time frame as the task?

A word about the first problem: l3ecause a task environment is purely a theoretical
construct, its adequacy depends entirely on its success in explaining behavior. For
instance, in dcscribing the task environment of ping-pong, we are tree to choose <1 set

of states and state transitions (actions) that we think will clarify the structure inherent
in the game. Thus we might choose i/1lpacts as the states, and divide state transitions
(actions) into two sorts: urWrs, which are the transitions caused by players, and
Irc>rrrucs, which are the transitions caused by the ball hitting a nonmm-ing surface, such
as the tabletop or the player’s body or thc floor. Each transition has two parameters:
spin and nonangular momentum. Altcrnatively, though, we might characterize the

galllt more qualitatively. There are several types of actions: /c~’/;<)/;J.<. ~f~’/h!;;~,
and wnaclrcs, cach with parameters such as n~ppin, rlrrcic’r:~,rirr, <lrlcl .//111. The states
are described from the perspective of thc player currently stroking the ball and are
characterized qualitatively by such terms as topspill deep conrt, smaslr don’tt the lille,
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and so forth. The advantage of such a qualitative account is that it coheres more

with how players themselves think about the game and also lends itself to describing
strategies we know players know. Nonetheless, such an account is no less a theoretical
construct imposed on the continuous set Ot changes occurring in a real ping-pong
game than is the first description. The choice between descriptive languages must
be based on the quality of the task analysis it permits. This is all the more true when
the animals performing the task lack a system of descriptive concepts for events and
situations.

This leaves us with problem two: How do we decide which actions of a crea-
ture’s action repertoire belong to a task and so arc internal to the task environment,
and which actions are, properly speaking, not part of performing the task and so
lie external to the task environment? Three natural criteria present themselves as

necessary: 
’

1. n’~(’~7s111’c7~)~(’ (’~(’Cf Oil ~J(’If01’1I1~1ilC(’: Actions Should have a measurable effect .

on the time, energy, or number of moves an agent would need to

complete the task. Hence, chirping while searching for suitablc
nest-building twigs, or stretching while hiding in a cave, would be
task-external actions, as they have nothing to do with nest building or
hiding per se and should have no impact on task performance.

2. M’f too XCl/cml: The action is not so prevalent, or general, that it has
nothing specifically to do with the task. For example, breathing,
blinking, and perspiring are actions that, if omitted, n7ay drastically affect
performance. Noletheless, their contribution is more to the general
condition of the agent than to anything task-specific. They are
background actions that contribute to the creaturc’s normal state of
being task-ready but arc not themselves part of any task in particular.

3. Not too speci/iC: The action is not so idiosyncratic, so specific to one
creature, that any other creature also performing the action in the same
task circumstances would neither improve nor worsen its position in the
state space. For example, suppose we were to find particular creatures for
whom such actions as twitching their whiskers while chasing prey,
scratching their ears while hiding, or licking their paws while playing
with mice can help them to hunt or hide or play. When prohibited from
doing these things, these particular animals perforln less competently at
these tasks. Hence, the actions all have a measurable effect on
performance. They satisfy condition 1. They also satisfy condition 2,
since they are not necessary to keep the animal in its normal state. Still,
it would be odd to view these actions as part of a general strategy for
hunting, hiding, or playing. Given our understanding of the tasks in
which they occurred, they seem to have more to do with the history and
idiosyncrasies of the particular creature who displays them than with the
task itself. Hence, they ought to be treated as task-exterllal.
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Applying these criteria is not alBvays an easy job. We cannot alBvays have advance
knowledge of all the actions that are potentially relevant to a goal, so it may be

difficult to decide whether an action is too idiosyncratic to count as an action within
a task or whether it is part of a novel strategy for task performance. Empirical studies
should help but this remains a real problem. As tornlal criteria themselves, however,
these conditions seem both necessary and sufficient to ltt us distinguish actions that
arc internal to a task from those that are external.

I now want to show that if we stick to these natural criteria, all sorts of external

or &dquo;metatask&dquo; actions are possible that can have significant effects on performance.
Actions taken outside a task may have side eyjccts that affects performance within the
task. If there are regularities in the way they may be created, the side effects can
be wploited by a creature so that, in effect, the creature may adapt the task to the
strategies it has rather than adapting its strategies to the task.
We may distinguish two broad families of strategies creatures possess for shaping

their task environments: (1) strategies for def ~rnlius,~ the topolo~ry of the state space and
(2) strategies for making existing state spaces more l0~iilltll’c’ly~ ioyjewial. Of these tBvo,
changing congenia)ity seems reserved for higher aninuls, particu)ar)y humans, so my
wamples of those strategies Bvill be drawn from studies and analyses we have done
with humans. However, close observation of animal populations may yet reveal that
even for these highly cognitive strategies, there are rudimentary analogous strategies
occurring in the wild, particutarty among creatures with cultures.

Let us turn to the first category of task-external actions.

Strategies for Deforming the State Space

The structure of a task, I have been arguing, is given by its state-space topology.
It follows that to change a task environment is to change its topology. Because any
modification of the choice points in a creature’s environment, its action repertoire,
or the consequence function (or metric defined over that environment) will add or
subtract nodes, add or subtract links, or change the distance between nodes, a natural

strategy of redesign is to alter one of these constituents.
To establish that a change is to a creature’s advantage, let us assume that behavioral

strategies can be analyzed as procedures, or nl~~oritlurns. Relative to a particular task
environment, an algorithm wit) have a particular set of costs and benefits. These

may be measured in computational terms, such as time (number of steps or actions),
or space (amount of memory, items to be tracked in the environment) required to

accomplish the task. However, we may also use broader metrics, such as the amount
of energy or tabor required to complete the task, the robustness of the algorithm
to interference and noise, and so on. It is important to be clear that, at this stage of
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our inquiry, the term nl~~orirhnr will be reserved tor the program or control structure

organizing the actual behaviors a creature reveals in task performance. Because every
attempt at performing a task will be interpreted as a trajectory of actions through
a task state space, we can ask what are the properties of a program responsible for
these trajectories. For lower animals, these programs may resemble a collection of

highly constrained action routines (tropes). Accordingly, action is largely reactive
to local conditions. As we ascend the great chain of being, however, we expect
the programs to become larger, more flexible, and sensitive to nonlocal features of
the environment. When humans and perhaps the great apes are the agents, their

programs become sufficiently complex that we cannot understand their effects unless
we also understand the regulating role of these creatures’ mental operations in the
more general system consisting of both mcntal and physical acts. At that point, we
must expand our notion of algorithm to include the idea of a colitrol structure

regulating both mental and physical actions and the tight coordination between the
two. This idea is expanded in section 5, where we discuss cognitive congeniality.

Because algorithms regulate activity within a task environment, we are assuming
that they do not change a task; rather, they cause transitions to new states within
the task. This is an observation of some import. To change the task environment
requires executing an action that lies outside the normal algorithm for the task. This
makes creating a better task environment resemble selecting a better habitat. The
similarity is only superficial. In environment redesign, the creature remains in the
same geographical region and is itself responsible for the change in environment.
The global environment does not present the creature with a range of preexisting
habitats, differing in salient respects, from among which the creature then chooses.
Rather, the creature itself actively creates the changes from a different preexisting
environment. Thus, in habitat selection, the environment is assumed to have its

task characteristics independently of the creature, whereas in active redesign, the
environment has been forcibly changed and may be expected to return gradually to
its original state on the creatures death.

Let us now review some of the different ways individual creatures have of altering
the topologies of their task environments. These include eliminating initial states,
hence eliminating choice points (the &dquo;just say no&dquo; strategy and method of routine

maintenance), changing the action repertoire (the methods of routine maintenance
and tool use), changing the consequence function (scouting ahead), and adding
choice points (tool use).

4.1 Just say no

The first example of a strategy for deforming the task environment is best understood
in terms of a filter that sifts out undesirable choice points, particularly the initial
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Figure 1
Here we see die probabthty density function showing the distribution ut dlflicult aiid easy cases in a task
enB’ironl11ent where the &dquo;just say no&dquo; strategy is used. As difficult cases are tiltered out, both average and
worst-else pert(JrI11.1!1ce improves.

choice points that a creature faces on entering task. In the course of its life, a

creature comes across a variety of task situations, a variety of irtitial smtcs. Some of
these initial states are easy to solve; some are difl-icult. If a creature learns to avoid

the difficult situations, if it learns to refrain from attempting a task when it is hardest,
it can ensure that certain rc~E~ions of the complete state space are never visited and so
are effectively pruned from the space. This has the effect of reducing the worst-case

performance of its behavior routines and hence the average complexity of the task
it actually attempts.

The &dquo;just say no&dquo; method bears closer scrutiny. Virtually every problem has dif-
ficult and easy instances in the sense that every algorithm designed to solve that
problem will do worse on harder instances than on easier ones. The average com-

plexity of a problem is given by the distribution of these difficult and easy cases (see
Fig. 1). Although in general it is not possible to identify in advance which cases
are going to be difficult and which are going to be easy, in particular problems there
often are cues that signal difficult cases and, of course, a creature may remember that
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a particular case is hard if it has tried it once before. As the creature learns more

about the cases that are difficult, it can create a personal filter that effectively reshapes
the distribution of cases it will face. Without physically changing the environment,
it changes its task environment.

In real life, this strategy is intuitive, pervasive, and population-wide, although
we also expect to find idiosyncratic instances of it, were we to observe individuals

closely. If a beta male finds itself threatened by an alpha, it is likely to growl, then
avert its eyes and avoid a confrontation. Because it lacks the strength and fighting
skills (fighting algorithms) to survive the harshest competition, it adopts a policy
of retreat. Given the less daunting environment defined by the world to which it

retreats, its fighting algorithm may sut~ice. This means, of course, that it will never
have access to several females, but e~ hypothesis we are assuming that in a competition
it would lose and poterltially incur serious injury.

Prudent retreat is not restricted to aggressive contexts. In looking for a stream to
dam, a beaver judges whether the environment will prove hospitable and yield to its
construction algorithm or whether it is likely to be a difficult case. If it seems that the

engineering skills required are beyond its level, the beaver may simply reject the site
and search for a more amenable one. The same applies to nesting birds. Sites for nests
are chosen not just for their camouflage value or for their protective features but also
for their affordances for nest building. If one local area does not provide hospitable
sites, it is best to continue the search for better sites. A second-rate site might be
adequate for a first-rate nest if a bird has the requisite architectural skills, but if it
does not, the easiest way to live within its means is to reject second-rate sites. In a

similar way, predators select their prey carefully, usually stalking them until the &dquo;initial
conditions&dquo; of the attack phase are in a good region of their attack algorithm. If it is

raining or stalking conditions are bad, rather than testing the excellence of its stalking
algorithms, a predator may simply postpone hunting and wait for better conditions.
Selectivity is an important component of competence. Even if a creature cannot

guarantee that it will never have to face worst-case scenarios, it can strongly bias the
distribution of cases and so improve the average case scenario it confronts.
A strictly human example of the &dquo;just say no&dquo; method of altering the task envi-

ronment can be found in chess playing. It sometimes is maintained that chess players
inhabit the same state space whether they are novices or experts. If the state space is

determined by the rules of the game, it is difficult to see how it could be otherwise.
Yet novice players never face most of the states that experts face. One reason is that
they themselves are incapable of making the sort of moves necessary to reach certain
states. This is a consequence of the competitive nature of chess. Yet another, more
salient reason for us now is the way chess partners sc!f-selcct. Players prefer to play
players of comparable rank. Hence, novices face a slightly different chess environ-
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merit than do experts because they never face states in which only experts could put
them.

A final example of the &dquo;just say no&dquo; strategy can be found in the recent simula-

tion studies on thc iterated prisoner’s dilelnma by Batali and Kitcher (1996). These

investigators found that when players are allowed a third action of waiting out a turn
in the prisoner’s dilemma task, they are able to achieve better aggregate outcomes.
The average outcome for an agent playing the iterated prisoner’s dilemma is greater
if that player along with his or her coparticipants can abstain from play whenever
he or she likes instead of having to make onc of the two classic moves inside the

game. By devising a policy of saying no under certain circumstances, players change
their opponents’ expectations of the costs and benefits of actions, leading everyone
to choose actions with greater social welflre-a classic example of the &dquo;just say no&dquo;

strategy, applied in a game theoretical context.
This then is the &dquo;just say no&dquo; strategy for environment change. It is not always

easy to decide when it is being followed, as it so often looks like an integral part
of a creature’s fighting, building, or hunting algorithm. However, conceptually it is

distinct. Indeed, if our analysis has been correct so far, it must be distinct from the

task algorithm itself as such actions are task-external and often superopti111a1: That is,
when they do not have serious downstream effects, such as preventing learning (we
are assuming the creature has completed its learning phase), such actions are ways
the creature has of increasing the average payoff for one of its strategies. This leads
to ail increase in overall fitness.

To determine why actions such as avoiding confrontation, sitting on the side-
lines, or looking for more hospitable sites are task-external actions and to determine
that they can at times be superoptimal, we need to remind ourselves of how we
decide on the action repertoire of a task. As was mentioned earlier, it is not always
obvious what actions should be regarded as part of a task and what actions should
be regarded as external to a task because it is not always clear whether a given action

may, in principle, advancc or hinder progress toward a goal. It may seem that selective

acceptance of initial conditions is just such a difficult case. My reason for treating
selective acceptance actions as external is that entering and leaving a task are not
literally part of a task; they represent decisions at another level. If we were to admit
that &dquo;just say no&dquo; actions were part of hunting or fighting or nest building, we
would have to admit a range of considerations into these capacities that really have

nothing to do with them. For instance, the decision to accept a nesting site must be
taken in light of the availability of sites, the lateness of the year, the prevalence of
predators, and so forth. All these considerations have nothing to do with the job of

building, which can be treated as a tairly modular skill. Hence, &dquo;just say no&dquo; actions

fall outside that modular skill. They are actions that affect the structure of a task
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without changing the state of the task, they do not cause transitions in that state

space.

Showing that &dquo;just say no&dquo; actions often are superoptimal is more difficulty. An

action is superoptimal, by our definition, if it does not tower the return to actions
in other tasks and it raises the expected valuc of activity in the current task. or else
if any lowering of returns it causes in other tasks is more than otyset by gains in
this one. Because &dquo;just say no&dquo; actions do not require that the creature do anything
other than reject the opportunity of engaging in a task, we must show that there are
times when doing nothing is the best thing a creature can do. To appreciate why
sitting on the sidelines can increase the yield of the currcnt task without decreasing
the yield in any other task, we need to recognize that there usually are clltry costs to

shifting from one task to another. The opportunity cost of doing nothing depends
not only on the return that might be available were the creature to do something else
with its time: it also depends on how easy it is to leave one task and begin another.

Assuming that a creature cannot instantaneously change gears, there are going to
be moments when the best thing a creature can do is to be idle, particularly if by
idling the creature increases the expected return of time spent on the same task later.
The upshot is that by invoking a strategy of waiting, or deferring action, a creature
can improve substantially its expected yield from its current skills. Without having
physically altered the properties of its habitat, it has altered the structure of one of

the tasks it faces in that habitat and so has improved its prospects tor surviving.

4.2 Routine maintenance

Learning to say no selectively to certain problem situations is one way of filtering out
choice points to improve performance. Another way c~f achieving a similar outcome
is to have a policy of maintaining one Is environment so that uldesirable choice

points (i.e., states on which one must act) rarely arise. This is a more active policy
that actually alters physical attributes of the habitat. Proverbs such as &dquo;a stitch in time

saves nine:’ &dquo;an ounce C)t prevention is worth ‘l pound Of cure,&dquo; and &dquo;scatter the

stones before they make a pile&dquo; (Lao-Tze, l X9X) all reflect the idea that prcventive
measures cost little when compared to the costs they save latcr. They often are easier
to perform too. It requires less knoBvledge and effort to do routine maintenance on
a car than to fix it when it breaks.

The value of maintenance strategies was discussed in Hammond, Converse, and
Grass (1995) in the context of activity management and pL1I1I1ing. These researcher
noted that because certain resources tend to reside in specific plares (e.g., clean

glasses, crockery, cutlery, and cleaning equipment typically are found in cupboards,
drawers, and closets), agents learn to count on these resources being ill their appointed
location. This a useful feature, for it means that if one is cooking or setting the table,
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Figure 2
Without roUtll1L’ 11I.llI!tL’I1.II1l&dquo;t’, t’l!Bïrol1l11t’l!tB havc· a prob,lblhty of I1IOBïl1g Il1to ~t.mw tlt,o ~ l rt’.ltt’ t’:Btr.1

work. By 1J1.1l1Jt,lIl1l1!g its task t’I1VlnJI1I1lL.Ilt. a ert’,Hun: rcdui~w the proh.lhdltv dut .1BB bB.Bnl,.IBL&dquo; BB&dquo;111

,trm·. tlicrcby reducing the expected average dttlirulty of case,.

it will not be necessary systcJ11,ltic1I1y to searcti the work space to till the items olle

requires. However, such saving do not h,1ppcn J11,lgicIlly. Entropy teaches us that

objects tend to scatter, so a plan or program that depends on resources being ill tlmir
expected places is apt to fail unless someone i17 the agents environment ensures that
items find their way back to their proper pLICL’. A certain state of the environment
must be maintained or enforced, by the agent itself, bv some automatic mechanism,
or by other members of the agents group.
We ran generalize the notion of resource maintenance. To begin, we note that

environments have a probability of moving into states that are undesirablt tor a OrW-
ture (Fig. 2). These states vary from the manageable but ditlicult to the impossible.
In o world designed to make life easy for a creature, they would not arise at all,
but inevitably they do arise because often they are side et1ècts of the very actions
taken by the creature. Thus, eating lL,,iLis to digestion Ie.lds to defecation, which leads
to soiling one’s immediate loc11e-unless, of course, the odious result is buried, as

domestic cats do, or the creature leaves the immediate locale to defecate, as most

creatures do their nests, Related actions are taking the garbage out of the burrow.
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Squirrels are known to remove rotting vegetation and, occasionally. the empty shells
of their nuts from their burrows. Undesirable states also arise because of exogenous
factors. Winter snows bury nuts that otherwise could be countcd on to be found.
Other animals gather and consume nuts. The net result is that in wintertime the

probability of finding a nut just in time is too low to be reliable. It is better to pay
the storage costs and the up-front labor costs to build an in-house inventory. Hence,
storing nuts for winter is another instance of resource maintenance.

Given that resources are constantly in demand and not themselves always Well
defined, it is difficult to know the extent to which creatures practice resource main-
tenance. Involved in the general notion of maintenance are keeping parts or systems
(or livestock, or cultivated goods) in good morkirrL~ order and ensuring that resources
are located mhore they are most convenient and mlren they are most needed and, most

conlplm of all, in y/ormr tlmn is illost n.~’/f~. Thus. to address the last condition atone,

tidying up a work space may involve putting items in canonical locations but equally
might involve redistributing the items in the same work space to remove clutter.
No wonder it is hard to know when an action has beneticial resource management

consequences. 
’

Two general principles can be invoked to explain the virtues of maintenance:
investment principles and artificial intelligence principles. According to standard
investment theory, the decision about whether to invest time doing A right now,
when one is not likely to need the results of A until later, depends on whether the

expected benefits to be collected some time in the future outweigh the current costs
multiplied by some interest factor to compensate for risk.~ If there is no interest rate,

there is no reason to prefer near-term returns on investment (instant gratification)
to long-term returns (deferred gratification). Storing nuts for winter makes good
investment sense because, effectively, the price of nuts goes up enough in winter
(when they will be scarce and require more labor to be found) to compensate for
present efforts. Accordingly, the current value of doing A now exceeds the current
value of anything else that might be done now. This is the simple story. However,
it IllakeS the idealizing assumption that the cost of labor is constant and arbitrarily
divisible, when in fact we know that some requests on our time are more urgent than

others, and we cannot always break from what we are doing to engage in other, more
profitable, activities. Hence, we cannot suppose that we will always be able to do .-I
at the last minute or at least not without incurring potentially exorbitant costs. This
complicates the equation, for it means that there is risk not only on the benefits side
but also on the labor (i.e., cost) side. The upshot is that on economic principles, not

3 Risk here means that if I had chosen to do something else with my time and labor right now, I could have immediate

gratification, whereas there is uncertainty about whether I will actually use the results of A later, whether the changes
I cause by doing A now will still be present later, and whether I will even be alive later to enjoy the benefits.
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only should a creature engage in maintenance actions whenever it has spare time (so
doing A now. when labor is cheap, is more protitable thall doing anything else), but
also it should engage in more maintenance actions if it is rrrmwmnin of w hen it might
next get thc chancc.

Maintenance ran also be justified on artiticial icoelligence principles. The rca-
soning is as follows: Expertise consists in knowing what to do in p,1rticubr cases.
The more an agent practices a skill, the broader thc range of cases it learns to hill-

dle and the more compiled or chunkcd its skills become (Newe)). )9t)()). The net
effect is faster performance on a widcr set of ex,1mples. Because the tilll space of

possible situations is large, however, there are a)ways cases that are Ilovel but that will
he treated as identical to known cases with possibly ullfortunate consequences, or
elsc thcy will require on-line adaptation (reasoning). The virtue of maintenance is
that it can bias the probability against the occurrence of these novel or ulltanlili<lr

cases. We know what to do in accustomed cases, so the more cases that are fU11il-

1<lr, the better our performance. If maintenance can cause this biased Willplt, it is

adaptive.
For both these reasons, routine maintenance is an effective means of shaping the

environment to help a creature circumvent perform,1I1ce-limiting circumstances and
so increase average yield oIl its actions, It is an important superoptimizing strategy.

4.3 Scouting ahead
The strategies of &dquo;just say no&dquo; and routinc maintenance arc both key ways creatures
have of taking back some degree of control over their environments. Because of
such task-external strategies, creatures do not have to be passive optimizers always
striving to do their best in games posed by nature, they can be active participants.
modifying the rules of the games they must play. A third technique for changing the
terms of a task is to scout ahead and change one’s knowledge of the consequences
of actions.

Imagine a lion stalking a herd of wildebeest. Should it attack from the right tiallk
or should it circle around and attack from the left? If there is a hill nearby, a third

action would be to defer attacking in order to secure extra or better information
about the layout of the herd.

In decision theory, value of information analysis (HoBvard, 1 c)Ofi) provides a

method for determining when it is Bvorthwhile to pay the costs of acquiring in-
formation. As can be seen in Figure 3, the expected utilities of the actions available
to a lion at the same physical location can be plotted on two separate occasions. On
the first occasion, before any special information-seeking actions have been taken,
the lion must operate with prior probabilitic about the arrangement of large and
slnall animals. On the basis of these prior probabilities, the clear choice is to attack
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Figure 3
ln thi> deCIsIOn tree. we see the expected l1tIlItIe~ ot ,lctlOn at the v.mw physic.)) )ocat)on on fBvo
occasions: at II based on prior probabilities .llone..1l1d ,it t, it-tcr an BIIforIlI.1tlon-g,ltheflng acnoi has
been taken. As long as the cost of information gathering does not exceed 1 1.5 l1nlt~. it is raoti.il to

collect information before acting.

from the left flank, for the value of that attack is given by the sum of the expected
utilities, which is 4.5. 011 the second occasion, the lion moves to a better viewing
position and now has a commanding view of how this particular herd is distributed
around the plain. Given this more informed idea of the organization of the herd, it is

possible to know with very high rolltidenee-virtual certainty, let us suppose-what
the payoffs will be from an attack from each flank. Thus, once at f2 the !ion will

know whether it will catch a large, small, or no animal by attacking from a particular
flank. However, because neither the creature (nor us) can know at tl which situation
will obtain at ij, all that can be known is that once all information-gathering activity
has been performed, the creature will be in one of three states of know!edge. It

will know that it can secure a large animal or a sn7a11 anima) or no anin7al at all.

Thus, at ti it knows that at t-, there is a one-third chance of taking a large anima!,
a one-third chance of taking a small animal, and a one-third chance of taking no
animal. Because the value of being at t~, is 5 and the value of being at ij is 4.5, any

information-gathering activity that costs less than 0.5 is worth undertaking

4 The values 0.33 for large, small, and no animal are by no means necessary. It is very likely that a further advantage of
scouting ahead is that the lion sufficiently improves its knowledge of the layout of the herd that it reduces its chances
of missing a kill. This would have the effect of changing the values to perhaps 0.4 large, 0.4 small, 0.2 no animal,
thereby increasing the benefit of scouting ahead.
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Scouting ahead is an interesting way of increasing eontrol ever an environment
because we do not normally think of information-gathering actions as ways of al-

tering a state space and, indccd, often they are not. Exploration might be an action
i/ltcnwl to a state space, in which case any scouting action cannot alter the space,
tor the topology of that space will resemble that given in Figure 3. If exploration is

part of a task. the action of moving to t, would not alter the state space; it would

lllercly be a rational move within that apacr. This reiterates the view that statc spaces
are rclational constructs, detined relative to an action repertoire. However, often

exploration is iiot an action that is intrrnal to a state space, in which case it is a Bvay

<1 creature has of altering the space.
The reason scouting ahead, as an external action, would have the effect of altcring

the state space is that a state space is not just a topology of connected statrs; it also

contains a measure ot the expected goodness of different states, and this measure

assigns a distance between states. Any alteration in the distance between states counts
as a change in the state space. An externai action of scouting ahead has the effect of

altering the distance between states.
If this seems odd, it may be because we are not used to regarding changes in

expected utility as real changes in distance-hence, as real changes i17 a state space.

An example that converts expected utility into expected travel time may help dispel
this vieBv. Every day when ! I leave the univcrsity, I must choose between two routes
to travel home. the coastal route or thc highway. Noriiiilly, the highway is taster r

(though less pleasant) and so, it am in a rush. ! I take it. However, it’ I leave at rush

hour, there is a good chancc of a traffic jam on thc highway route, right where there
is a merge with another highway. Happily, it is possible to take a small detour and
look out over the merge area. At rush hour, this action, though taking a few minutes.
ends up saving me time on average because ! I am able then to take whichever route
is taster. If were always to take the roastal road at rush hour, my average travel time
would be longer than if I take the coastal road only when there is a traffic jam on
the highway. Similarly, if were always to take thc highway at rush hour, my average
travel time would be longer than if I sometimes take the coastal road. By adding a

scouting ahead action, I can reduce n7y average travel time and hence improve my
average performance.

This ought to n7ake clear that scouting ahead can after thc topology of a state space
if it is an action external to the task, but why view scouting ahead as a behavioral
routine that artually is external to such tasks as hunting (or driving home)? My
argument is at bottonl a slippery-slope argument: If we ,1rc to use the notion of

task environment as an explanatory construct in understanding ,1I11177,1I behavior, Bve
need to draw a line between actions that are part of the task (part Ot hunting,
in this case) and actions that are not. If we do not draw this line, then because
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information-gathering actions are so diverse and so difficult to determine whether

they are relevant, we may be forccd to include, as part of the corc competence of

hunting, actions that seem completcly unconnected to hunting.
We can concretize this slippery-slope argument by returning to the example of

a lion scaling a hill to look out over the plains. Clearly, scaling a hill is not part
of the attack phase of hunting, which occurs on the plalllS. If scaling hills is part
of hunting at all, it must be part of a more inclusive task of hunting-say, hunting
and hunting-rotated scouting. Are there natural lilllits to this more inclusive task?

I think not. Wherever we draw the boundaries of hunting-related scouting, there
will always be new information-gathering strategies that have a measurable in7pact
on hunting performance and yct that fall outside the task of hunting more broadly
detil7ed. For instance, who would call the action of going for a postkill exploratory
walk a part of hunting? For one thing, it occurs after hunting. For another, it may
involve walking to regions that are spatially distant from areas in which the lion
ever, as a matter of fact, hunts. Yet a predator with good knowledge of the lay
of the land, knowledge of wherc enclosures and open spaces are, often can use

that knowledge in trapping animals during the hunting phase. As rats are known to

engage in exploratory behavior unconnected to food search, other animals may be
expected to as well, but then we face a dilemma: Either we must conclude that there
are actions that are temporally and often spatially distant from the normal actions of
a task but that nonetheless we must accept as part of the task (a conclusion that is

tantamount to saying we do not know what is involved in performing the task) or
we must accept that wherever we draw the boundary of a task’s state space, it will be
possible to find information-gathering actions that lie outside that boundary and that
are capable of altering activity inside it. Sometimes these actions are superoptimal.

4.4 Creating new actions by using tools

Throughout our discussion, we have spoken often of the task-changing power of
tools. Because a task environment is defined relative to an agents action repertoire,
any change in the actions the agent may perform changes the topology of the state
space. Introducing a tool is one of the easiest ways to change an agent’s action
repertoire, for now it is possible to do things previously unattainable, or unattainable
in a single step.

Take the case of New Caledonia crows, recently discussed by Gavid Hunt (1996).
Many bird species use twigs, bits of bark and, in at least one case, cactus spines lying
on the ground to aid them in their search for tasty insects and spiders. The New
Caledonia crows, though, actually fishion the probes they use. One tool is made

from twigs bitten from living trees. It serves as a hook. Another is a pointed probe,
2() cm long, made from the tough barbed leaves of the screw pine. In certain cases,
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such tools just make it easier or more reliable to fish out insects. More often, it would
be impossible for the crows to search the interior of holes without the sticks. Owing
to the different ways crows in different places use the tools, it is interesting to ponder
how local the tool-lnakil7g cultures are, but the virtue of the tools and, in part, the
cultures that ensure the skills to craft them is that new actions are possible that alter
the state space of lIlSeOt search. These alloBv new and shorter paths to the goal of
insect capture.

It may seem that delil7eating the effect of tool use on thc structure of a task is

as easy as rewriting the state space with a slightly changed connectivity and possibly
a few extra states thrown in, but this is an oversliiiplificatioii. lIl fact. tool use can

change almost every facet of a task. Tool use may require any of the following
177oditic<itiol7s:

* Adding nodes to the state space as new things can now be done: For
example, with a rock hammer, a chimp is able to crack harder nuts, so
now the space of things that can be done increases.

~ Reconceptualizing or refining the state space so that states and tasks once _

treated as unitary must now be diflerel7tiated: For instance, because of 
’

the role that rock hammers play in the activity of cracking nuts, chimps
now can distinguish nuts that are crackable without a hammer from .

those crackable with a hammer from those that are totally uncrackablr.
Given the value of distinguishing these nuts, it becomes possible to
detine new tasks and actions, such as sorting nuts by these new
categories, preparing oneself to use the tools, and the manifold activities
associated with maintaining the tools.

. Adding new branches and changing the distance measures between states
so that once-distant states now are reachable in fewer steps with the help
of a tool: This reduces the shortest path from one state to another. For
cxample, a tray may permit one to pick up several objects at once,

, thereby creating an action that behaves as a macro-operator, collapsing
several actions into a single one.

* Changing the probability of reaching a state: For instance, chimp fishing
poles increase the probability of securing termites, as do the
manufactured probes used by the New Caledonia croBvs.

Given the profound impact that tool use can have on performance, it hardly needs

justification as a strategy for superoptimization. Tool use and its cognate, coopting
existing resources for new functions, are two of the most poBvertill ways of changing
the state space of the task. With the act of introducing a tool, or with a behavior
that imbues an existing resource with new functionality, a creature can leverage its

existing capacities to new levels. FeBv superoptimizing strategies are as powerful.
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Figure 4
In the game of 15, there are wvo players. Players take turns selecting one card from the set on the table.
The first to collect three cards that sum to 15 wins. The game of 15 and tic-tac-toe have isomorphic
state spaces, as can be inferred from transforming the former into a tic-tar-toe-likr game based on a
magic square, as shown 111 the nuddlr p,m<.1.

5 Strategies for Improving Cognitive Congeniality

Thus tar we have considered actions that prune the state space of a task environ-

ment, that introduce shortcuts, and that guarantee that action trajectories will lie in

hospitable regions. These actions increase the likelihood of task success or reduce
its expected cost, measured in physical terms. There also is a class of task-evternal

actions that leave the state space formally intact but that reduce the number and cost
of mental operations needed for task success. These actions, which elsewhere ! I have
called opistwnii and iornplorrrwntnry~ artions (Kirsh & Maglio, I tJtJ4; Kirsh, 1995a), 5

change the world in order to have usefu) cognitive effects on the ~y~rrn. They reliably
increase the speed, accuracy, or robustness of performance. They are yet another way
a creature-usually a human creature-has of improving its fit with its environment.

Let us call the measure of how co~nitively hospitable an environment is its a~~~ni-
tim~ Different implementations of a state space have difierent degrees of
cognitive congeniality. We can explore this notion using an old chestnut from the
theory of human problem solving: According to Simon (1 tJH 1 a) tic-tac-toe and the
game of 15 have isomorphic state spaces (Fig. 4), yet tic-tac-toe is a trivial game,
whereas the game of 15 is not.

5 The expression epistemic action was chosen to describe certain types of actions that lead agents to epistemic states they
might otherwise have reached by internal computation. In "Tetris," for example, Paul Maglio and I found that players
seem to prefer to rotate "Tetris" pieces externally rather than rotate them mentally. They can more quickly reach states
of knowing what a piece would look like rotated 90 or 180 degrees by rotating the piece in the world and observing
the result than by performing the counterpart mental rotation. The expression complementary action was chosen to
describe certain types of actions performed in the external world that are so timed that they interleave with mental
actions as part of a more inclusive algorithmic strategy. For instance, we noted that subjects who count coins often
use their fingers to point in a manner that complements visual routines (see the next section).
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Imagine now that we are playing the game of 15 but Bve have been alloBved to
transform it to a magic square. On each turn, player X chooses a card and nips
it over on its place in the square, whereas player 0 chooses a card and takes it

off the board (see Fig. 4). Clearly, this new arrangement of 1 S is cognitively more

congenial than the first. It is not as congenial as tic-tac-toe itself, but it is a step in that
direction. Like tic-tac-toe, the new arrangement allows us to extract much critical

task information perceptually rather than by mental arithmetic and so it eI7COdeS

needed information more c:iplicitl~~ (Kirsh. 1 ’>9<)) in the environment than in the

original, linear arrangement. The result is that it saves mental computation, reduces

cognitive load on working memory, and makes the game relatively easy without long
hours of practice.

Using this notion of cognitive congeniality, we now Call7 consider ,i range of

natural environments to see how creatures, most esplclallly humans, ,1dapt those
environments to make them more cognitively congenial. Let iiic emphasize that I

a177 not suggesting that nonhuman animals engage 111 environmenta) reorganization ill

ways that seriously resemble the rather sophisticated methods we hnd among humans.
Even among humans, gross rereprcselltation of the sort occurring in tic-tac-toe and
the game of I 5 is rare outside of paper and pcncil eontrats, so it would be a surprise
to find close analogs to eaterl7al rerepresentation among animals. However, a tairly
sizable class of actions exists that is less cognitive and also improves congeniality, which
I Bvlll discuss. It is important to appreciate that even for animals, environments can be
ranked along certain IlOllph~’SIC.11 dimensions, such IS their cognitive congeniahty, and
that this ranking may show up in patterns of habitat selection where it is evident that
creatures are exercising a selective function over the various environments through
which they pass. 

’

Study of the cognitive congeniality of an environment is still in its earliest stages.

Questions such as: What is the maximum amount of Bvorking memory required to

perform the task? What is the maximum amount of mental computation required
to decide what to do next? HoBv much task-relevant information is encoded ill

the environment, and how easily is it recovered? are central questions for the tield.
To date, there is no general theory to report (see Kirsh, 1995b). Nonetheless, it

is apparent that cognitive congeniality is a key attribute in dozens of design tielus,
ranging from architecture and human computer interaction to product design and
industrial engineering. As we learn more about animal cognition, it may well have an

ilnportant role to play in ethology too. In the remainder of this article, I shall consider
sollle of the techniques humans have for improving the cognitive conge niality of their
environments. It is 171y belief that weak correlates to these can ocrasionally be found
in the animal world.
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Figure 5
ZeeZee twice solved this wooden cutout puzzle in its normal orientation. Then she was asked to play
with it upside down. After twice trying the wrong locations tor pieces, she turned the puzzle right side
up and quickly solved thc remainder, as if by memory.

5.1 Complementary strategies 

’

A complementary strategy is an interleaved sequence of physical and mental actions
that results in a problem being solved-a computation being pertormed-in a more
efficient way than if only the mental or physical actions alone are used. An example
discussed in Kirsh (1995a) is pointing at coins while counting them. If subjects are
asked to count, without either touching the coins or pointing to them, 3() coins

consisting of nickels, dimes, and quarters, the result is that more than 5() percent
of the time the subjects give the wrong answer. If they are allowed to point to the
coins, that error rate is reduced to approximately 35 percent, and, if they are allowed
to move the coins freely, the error rate falls to nearly 20 perceii t.6 The hypothesis
is that if an agent learns how to manipulate resources in its environment in a timely
and constructive manner, it is able to solve cognitive tasks with less working memory,
less visual spatial memory, less control of attention, or less visual search than would
otherwise be required. Complementary actions are part of a strategy for restructuring
the environment to improve the speed, accuracy, or robustness of cognitive processes.

Recently, I observed a good example of a complementary strategy in an 18-
month-old child. As shown in Figure 5, ZeeZee was playing with a simple wooden
puzzle. She had already played with this same puzzle twice before and, judging by
the speed and accuracy with which she now assembled the puzzle, she had apparently
memorized where each piece was to be placed. The little bird went in the lower
left, the cat in the upper right, and the giraffe in the upper middle. I decided to test

6 This last result stems from pilot studies done in the Interactive Cognition Laboratory at the Department of Cognitive
Science, University of California, San Diego.
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how she would solve the same puzzle when it was rotated 180 degrees, so that pieces
normally belonging in the bottom row now belonged upside down in the top row
(see Fig. 5). Would she solve the puzzle this time by adapting her memory of where
each piece went, would she fail to recognize the transformation and so use on-line

reasoning to solve it as if from scratch, or would she do something different?.
Her first action was to try the little bird in the lower left corner, its customary

place had the board been right side up. When the piece did not fit, ZeeZee looked
the board over and tried placing the bird in the middle space along the bottom row,
once again in the wrong orientation, as if now trying unsuccessfully to solve the

puzzle but confused by her incorrect memory. She then went straight to the upper
right slot (the correct position) and placed the piece in its appropriate orientation
after a little effort. At this point, she turned the entire puzzle 1 ~I degrees, returning
it to its normal orientation, and quickly placed the remaining pieces in their proper
(and apparently memorized) positions.

What type of action is this sort of board rotation? It is not a normal task-internal

action, as no amount of reorientation can bring us closer or f1fther from the goal
of having all the pieces in place. Nor is it a task-external action of the sort we

have already described, as the topology of the state space remains unchanged: Any
state accessible before rotation is accessible after rotation. Additionally, the number
of placement actions and the physical energy required to place each piece in its

position are identical whatever the puzzle’s orientation, assuming arbitrary orientation
of the pieces on the ground. Hence, there has been no change in the physical
distance separating states. Evidently, it is a different type of action, an action that

reorganizes the environment for mental rather than physical savings. By performing
the metatask action of rotating the whole board, ZeeZee was able to stop her effortful
on-line problem solving and return to her original rote strategy. This means that she
could once again solve the puzzle using long-term memory rather than the working
memory needed in on-line problem solving. She seems to have brought the world
into conformity with her mental model rather than to adapt her mental model to
accommodate upside down cases.

ZeeZee’s board rotation is a simple example of a complementary action or strat-

egy. Here is one that is slightly more complex than ZeeZee’s. Once again, it is an

interactive technique that saves mental rather than physical effort. In Figure 6, we

see a scatter of 2() sticks of similar diameter but differing lengths. The agent’s task
is to identify the longest. Because longest is a globally defined property, we cannot
be sure that a given stick is the longest without checking all the others, but here we
are faced with a choice: Shall we move sticks as we visually check them, or shall we
leave them untouched?

Many strategies are possible, but virtually all good ones involve moving the sticks.
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Figure 6
Subjerts were asked to pick out tlne largest stick in (a). To solw the problem, subjects ahnost BJ1B’,lri,lbly
tnove the sticks, as in (b). Part (c) shows how rearrangetneut can trmialtze otherwise tilile-colistilililig
global Judgments, such as deciding whether all sticks ire dit1èrent in size.

For instance, one algorithm is to pick up the first two sticks, compare their length,
keep the longer and discard the shorter into a reject pile, then continue comparing
and discarding until all sticks in the resource pile have been checked. The stick we
are left holding must be the longest.

Clearly, this is all algorithmically effective stratcgy. We know that we will check all
and only the sticks we need to compare. Nonetheless, it runs longer than necessary.
A better algorithm exploits our ability to make good guesses about the longest stick

remaining in the resource pile. This time we pick up the two largest-looking sticks
and discard the shorter until we see a major difference in length between the stick
in our hand and the longest remaining stick in the resource pile. After a few sticks,
we are certain. An even lore efficient strategy is to grasp the three or four largest-
looking sticks and then push their bottoms against the table. The one stick that pokes
out farthest is the longest.

As theorists, what are we to make of all this activity? Should we regard these
various actions of picking up candidate sticks and placing them ill piles as actual
moves within the state space of selecting the longest? Should we regard pushing the
sticks against the table as a task-internal action? leather, should we see them both
as task-external actions? Because one might just visually scan the sticks, mentally
comparing each, there is nothing intrinsic to the task of selecting the longest that

requires either the sort of organizational behavior we observe in creating distinct piles
or the analog computation of pushing the sticks against the tabletop. Nonetheless,
sticks must be picked up and then put down. Therefore, intuitively, there is nothing
task-external about actions that involve moving sticks around and placing them in

piles, although the action of pushing them in groups against the table’s surface does
strain the intuition. The real problem is to decide how to describe these actions,
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for if we include only &dquo;objective&dquo; spatial clenlcllts in our action dtscriptions-so
that actions of picking up are different if they involve sticks in different locations
and orientations, as are actions of placing down-then the state space will be large
enough to describe, at a detailed leacl, every individual sequence of actions that sub-

jects display, but the level of description will be so fine that we will be unable to
describe meaningfuDy the strategies the subjects are using. For instance, the inter-
esting regularity at a strategic level is that subjects seem to make meaningful piles of
sticks, or they intentionally exploit physical properties of the sticks and tibletop to

perform an analog computation. Such regularities would be lost if we confine our
descriptions of actions to straightforwardly physical characteristics of actions.

However, if we detine the action repertoire using concepts that human subjects
then7selves use in describing the structure of their work space, we create the problem
that two subjects will have to be described as operating in different task environments
if they conceptualize their environment in different ways. This is not arceptable.
Either we must give up the notion of task environment as a useful explanatory
construct or grant that there is a core task environment shared by all performers of
a task, and that a variety of actions may be performed that do not fall within that
task environment, narrowty construed, but that altcr its cognitive congeniality. Once
an environment has been so altered, strategies call be devised that exploit various
of these nonilltrinsic properties of the task environment. Thus, although stick-

sorting tasks cannot be performed without shifting sticks about, there is no need

to manage the spatial organization of the environment in the sense of partitioning
it into discard regions, candidate regions, and the like. Such actions make the task
easier to accomplish but are undertaken for their effects on the agents understanding
of the task and for the &dquo;cognitive affordances&dquo; they create rather than to make literal

progress in the task. They are complementary actions, actions performed externally
for their effects on internal computation.

In interpreting certain actions in this way, we are following a growing tradition of
constructivisll7 in learning theory (Duffy R Jonassen, 1 92), and situated cognition
in cognitive science (Hutchins, 1995; Norman, 1988; Suchlnan, 1986) by regarding
many actions as having more to do with CDE~IIIIII~(’ cCclf~Ol~111~~ than with step-by-step
advancement to the goal. For instance, the point of creating a discard pile is to

encode information about the state of our algorithm. It is to help us keep track of
the sticks we have checked and the ones that remain. Indeed, the point of creating a

7 To confirm the idea that people conceptualize regions of their work space, we ran several subjects on the select longest
stick task, not only recording their speed and accuracy, but also asking them after the task was over to describe what
they were doing. All our subjects drew a distinction between discard areas and resource areas. In a small follow-up
study, we further tested this idea by "accidentally" laying down a battery from the video camera on the discard area.
This caused some of the sticks between the two piles to become mixed. As predicted, subjects reorganized the space
to maintain the segregation of sticks.



446

discard pile can be understood only if we see the action as part of an algorithm that
is being executed partly in the world and partly in the creature’s head.

Assuming, then, that a class of actions exists that may improve task performance
and that lies outside a state-space formalism-a class of actions that improves judg-
ment, decision making, planning, and execution-all that remains is to show that

such metatask actions are superoptilnal. This is easy: Because the point of most

complementary actions is to reduce cognitive loads and so improve performance, it
is no surprise that without such actions judgments tend to be error-prone. In our

pilot study, when subjects were not allowed to point, touch, or reorganize the sticks,
and their task was to identify the longest stick of 20 distributed (as shown in Fig. 6a),
they took more than 55 percent more time and made more than three times as many
errors as when they were allowed to manipulate the sticks any way they liked. Sim-
ilar results hold when subjects are required to pick up the largest stick but otherwise
leave the arrangement intact. When the prohibition against movement was lifted

subjects invariably relied on moving the sticks into piles, and their accuracy rose as
indicated. This suggests that if accuracy is taken into account, the easiest way to

improve performance is to allow certain task-external actions.

5.2 Actions that encode information externally
If we attempt to be more specific in the function of complementary actions, we very
soon distinguish a large family of such actions that are concerned with externally
encoding information about ongoing mental activity. The stick-sorting algorithm,
for instance, uses the distinction between reject and resource piles to encode infor-
mation about which sticks have been checked and which sticks have not. Having a

reject pile lets us proceed in the algorithm without having to remember which sticks
have already been checked.
A second example of this same pervasive activity can be found in card games. In

ordinary games, such as gin rummy, bridge, and especially pinochle, it is common for

players to organize their hands continually into arrangements that encode information
about their game intentions. For instance, in Figure 7, we see four different ways
of encoding the same set of cards dealt in a game of 14-card gin.~ From a purely
pragmatic viewpoint, there is no reason to group cards. Grouping has no effect on
the goals you can reach, so from a task-environment perspective, each grouping
designates the same state in the state space. Hence grouping must be a metaaction.

Why do players bother? What function does it serve?
The simplest analysis of grouping is that it is done to encode plan fragments.

8 The goal of 14-card gin is to find two groupings of 4 cards and two groupings of 3 cards. Cards form an admissible
grouping when they are 3 or 4 of a kind or 3 or 4 in a row of the same suit.
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Figure 7
These tour figures represent three different ways of organizing the siiiie set of cards. Part (.i) shows the
cards as originally dealt. Thr other figures show the re.Hr.lI1gement~ made by three subjects.

One of the key cognitive tasks a card player faces is to sketch out a rough plan
of the subgoals he or she will attempt to achieve. In gin rummy, for instance, as

shown in Figure 7, there are many possible completions for which one can aim.
An obvious explanation of the differences between the various organizations shown
is that different players have chosen different strategies. Of course, we cannot be
certain that we are right in our interpretation of what is encoded in each hand. We
must guess at the encoding scheme each player is using or believc what each says
when we ask. Moreover, players may make mistakes in encoding according to their
own encoding scheme. Within these limits, characteristic of an interpretive science,
we believe we can tell from the way the hands are laid out (and from the player’s
response to questioning) when a player has overlooked certain possible continuations
that others have noticed. In Figure 7, player i has ovcrlooked the tact that there are
four queens, which and d noticed.

The reason I am elaborating specific techniques we observe in card playing, count-
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ing sticks, and solving simple puzzles is that these actions are a central, if neglected,
element of human activity. In card playing, it is obvious what the advantages of
continual re-sorting are. Because game intentions are encoded externally, the player
need not remember them; they can be read off the cards. This savings will reappear
every time a change in intentions is made. Moreover, if the cards are well laid out,
the time required to judge whether a target card can serve as a completion is faster
than if the cards are poorly laid out. Players using good layouts also produce fewer
errors,’ leading one to suppose that effective goal encoding helps make execution
of a plan more reliable and speedy. As long as we accept that card playing is not

an unnatural task-a task unlike any we might be called on to perform in noncard
contexts-we have reason to suspect that the kinds of complementary actions shown
in card play have their counterpart throughout everyday life.

To sum up, my point in discussing interactive strategies typical of human-situated
activity, is that there is a second family of strategies that agents possess for making
their environments more hospitable. In addition to deforming the topology of their
state spaces and hence the physical effort required to traverse states, these strategies
may alter the cognitive properties of their environments and thus save mental effort.
In some of the examples just mentioned, the method of changing the cognitive
properties of environments was to redesign the appearance of the task sufficiently to
change the complexity of the task. We know that how a problem is represented can
have a major impact on the time and space required to solve the problem (Gigeren-
zer & Hoffrage, 1905). With a good representation, a problem may be easy to solve,
requiring little search but, with a bad representation, the problem may be almost
impossible to solve in that form and may require inordinate amounts of search, cal-
culation, and recall of states. Once we view creatures as carrying out algorithms
partly in their heads and partly in their environments, we must recognize that par-
ticular environmental layouts permit algorithms that lead to major savings. Even if
these savings are not always evident in the time necessary to complete the task, they
often will show up as significant improvements in accuracy, robustness, and reliability,
all factors that matter to creatures.

6 Conclusion

I have been arguing throughout this article that organisms have two rather different
ways of improving their fitness. The first, and most familiar, is by adapting them-
selves to their environments. In equilibrium, this leads to an optimal allocation of
time between the different adaptive activities that make up an Orgalllslll’s life. The

9 This conjecture has been confirmed in pilot experiments carried out in our laboratory.
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second way of improving fitness is by redesigning the environment to make it more
hospitable: That is, organisms can adapt the environment to fit their existing skills
and capacities. This leads to superoptimization for a creature already in eqlllllbrium.
Superoptimization requires the environment to be altered so that existing skills and

techniques of survival yield greater returns in at least one task environment without
sacrificing returns in others (Pareto optimization) or so that any lower returns in

other task environments are more than compensated for by increases in others.
To implement an analysis based on superoptimization, it was necessary to intro-

duce the notion of a task environment (drawn from the theory of problem solving)
and the notion of a behavioral strategy interpreted as a11 algorithmic process. Two
broad methods for improving algorithmic performance in a task environment were
distinguished: deform the topology of a task’s state space or improve the cognitive
congeniality of a task’s state space. Both have the eftect of altering the avcrage task
complexity of performance.

It was suggested that the cognitive capacities needed to bring changes at the level
Ot cognitive congeniality exceed those of most animals, although there may exist

analogs to such environment-changing activity, which naturalists may discover once

they have more detailed models of the cognitive processes underlying ,1I1im,1l skills.
Chief among these strategies are complementary actions. Complementary actions are
those actions performed for the sake of simplifying computation. In humans, we find
complementary actions everywhere. When a person uses his or her finger to point
to a phone listing in the phone book, that individual is executing a complementary
action because the use of ones hands saves one from having to remember the precise
location of the target amid a set of distracters. Without the sort of interactive help
that co171es from manipulating environmenta) resources, including hands, many of
the tasks we perform easily would be beyond our abilities.

Actions that deform the topology of a state space, by contrast with transformation
of congeniality, are common in the animal kingdom and no doubt will be more

widely appreciated once naturalists begin wplicitly looking te7r them. Some are

obvious. The actions of introducing a new tool and putting an existing object to
new use, for instance, clearly are ones that may enhance the performance of existing
strategies and permit variations that increase the yield of activity undertaken in

that task environment. Less obvious strategies have to do with filtering out hard
initial states of a task (the &dquo;just say no&dquo; strategy), maintaining the environment in
a felicitous condition (routine maintenance), and undertaking exploratory actions

(scouting ahead). The point of each of these strategies is to change the expected
payoff of actions; it is to deform the task structure to make it easier or cheaper to

complete the task successfully.
In the end, the value of analyzing activity along task analysis lines will depend on
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the insight it gives us into the principles that structure behavior. I havc suggested that
one useful approach is to distinguish actions that are internal to a task from actions
that are external to it. These task-external actions are special only in the sense that
as researchers we note that they force us to revise our models of behavior. Instead

of assuming that most actions that occur in the time frame of a task are part of a

strategy for solving the task, we may begin to consider whether some of those actions
are external to the strategy, designed VptCltlcally to modify the task. If this proves
to be a constructive way of looking at human and anilllal behavior, then evolution

may select for both effective behavior control strategies and ettective task redesign
strategies.
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